Transformations of Functions

For any function f(x), we can generalize with what is known as parameters. Notice that a different variable is used for each type of transformation.

f(x)	The parent graph
f(-x)	Reflection across the y-axis
-f(x)	Reflection across the x-axis
f(x-c)	Phase shift to the right c units
f(x+c)	Phase shift to the left c units
f(x)+d	Vertical translation up d units
f(x)-d	Vertical translation down d units
af(x), a < -1 or a > 1	Stretch of the y-values
$af(x), -1 < a < 1, a \neq 0$	Shrink of the y-values

Identify the parent graph then describe each transformation.

Functional Representation of	Description of Transformation(s)
Transformation	
1, $f(x) = x^2 - 3$	
2. $f(x) = 2x^2 + 1$	
3. $f(x) = (x-1)^2 + 2$	
4. $f(x) = -x^2 + 2$	
5. $f(x) = -(x+1)^2 - 2$	
6. $f(x) = -\frac{1}{2}(x+3)^2 - 1$	
7. $g(x) = \sqrt{x+3}$	
$8. \ g(x) = \sqrt{1-x}$	
$9. \ g(x) = \sqrt{x-2} + 1$	
10. $g(x) = -2\sqrt{x-1} + 3$	